Exercise A3: The Local Coordinate System

Student name: \qquad Class: \qquad Date: \qquad
Check the box with the correct answer.
Question 1: Zoom in on the star Regulus. What are the approximate coordinates of Regulus as shown in the Main Window for this specific date and at this specific time?a. Altitude $=17^{\circ}$ Azimuth $=90^{\circ}$b. Altitude $=90^{\circ}$ Azimuth $=17^{\circ}$c. Altitude $=18^{\circ}$ Azimuth $=270^{\circ}$d. Altitude $=72^{\circ}$ Azimuth $=90^{\circ}$

Question 2: After this time has been advanced by two hours, which of these statements is correct?a. Regulus and the coordinate grid have both shifted westward.b. The altitude and azimuth of Regulus have changed because the local coordinate grid has shifted westward.c. The altitude and azimuth of Regulus have changed while the local coordinate grid has remained fixed.d. The constellations have shifted westward but the local coordinates (that is, altitude and azimuth) of Regulus have not changed.

Question 3: Select the statement that correctly describes how Minkar's altitude changes over time.a. The altitude of Minkar increases continuously right across the sky as time advances.b. Minkar reaches its maximum altitude as it crosses the meridian.c. The altitude of Minkar is greater to the west of the meridian than it is to the east of the meridian.d. The altitude of Minkar is negative to the east of the meridian, and positive to the west of the meridian.

Question 4: At what time of the day is the Sun most likely to be at its highest altitude, on the local meridian?a. At midnight.b. At sunrise.c. At noon.d. At sunset.

Question 5: What effect does changing an observer's latitude have on the altitude of Antares? a. The altitude of Antares is always equal to the observer's latitude.b. The altitude of Antares increased as the observer's latitude increased.c. The altitude of Antares increased as the observer's longitude increased.d. The altitude of Antares increased as the observer's latitude decreased.

Question 6: What fraction of a circle does the difference in the Sun's altitude as measured from the two cities represent?a. 1/7b. $7 / 360$c. $360 / 7$d. $82 / 89$

Question 7: What is the circumference of the Earth using Eratosthenes' method?a. $925 \mathrm{~km} \times 7$b. $925 \mathrm{~km} \times(82 / 89)$c. $925 \mathrm{~km} \times(7 / 360)$d. $925 \mathrm{~km} \times(360 / 7)$

